philosophers_prep/rendu/race_detector.c
Rui Ribeiro 2128325237 Added new exercices to better cover philosophers_bonus requirements
- Added exercices:
  - Added process basics.
  - Added semaphores basics.
  - Added process communication
  - Added process termination
  - Added process_philosophers
  - Renamed and reordered philosophers_bonus
2025-10-14 16:37:24 +01:00

575 lines
14 KiB
C

/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* race_detector.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: ruiferna <ruiferna@student.42porto.com> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2025/10/14 08:32:00 by ruiferna #+# #+# */
/* Updated: 2025/10/14 16:30:18 by ruiferna ### ########.fr */
/* */
/* ************************************************************************** */
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#include <string.h>
typedef enum e_strategy
{
STRATEGY_A, // Global mutex for all operations
STRATEGY_B, // Mutex per fork + printf mutex
STRATEGY_C // Minimize lock time
} t_strategy;
typedef struct s_philo
{
int id;
int meals_eaten;
long long last_meal_time;
int data_race_count;
struct s_shared *shared;
} t_philo;
typedef struct s_shared
{
int num_philos;
int time_to_die;
int time_to_eat;
int time_to_sleep;
int simulation_stop;
int total_data_races;
int total_deaths;
long long start_time;
long long total_time;
t_strategy strategy;
pthread_mutex_t *forks;
pthread_mutex_t global_mutex; // Strategy A
pthread_mutex_t printf_mutex; // Strategy B
t_philo *philos;
} t_shared;
typedef struct s_test_result
{
t_strategy strategy;
int data_races;
int deaths;
long long time_ms;
} t_test_result;
long long get_current_time(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return ((tv.tv_sec * 1000LL) + (tv.tv_usec / 1000LL));
}
void precise_sleep(int ms)
{
long long start_time;
start_time = get_current_time();
while ((get_current_time() - start_time) < ms)
usleep(100);
}
void print_message(t_shared *shared, int philo_id, char *message)
{
long long timestamp;
if (shared->strategy == STRATEGY_A)
{
// Strategy A: Already have global lock
timestamp = get_current_time() - shared->start_time;
printf("%lld %d %s\n", timestamp, philo_id, message);
}
else
{
// Strategy B & C: Use printf mutex
pthread_mutex_lock(&shared->printf_mutex);
timestamp = get_current_time() - shared->start_time;
printf("%lld %d %s\n", timestamp, philo_id, message);
pthread_mutex_unlock(&shared->printf_mutex);
}
}
int check_stop(t_shared *shared)
{
int stop;
if (shared->strategy == STRATEGY_A)
{
// Strategy A: Already have global lock
stop = shared->simulation_stop;
}
else
{
// Strategy B & C: Need to check atomically
stop = shared->simulation_stop;
}
return (stop);
}
void detect_data_race(t_philo *philo, char *operation)
{
// Simple data race detection: count concurrent access to shared data
philo->data_race_count++;
philo->shared->total_data_races++;
}
void philo_eat_strategy_a(t_philo *philo)
{
int left_fork;
int right_fork;
int first;
int second;
left_fork = philo->id - 1;
right_fork = philo->id % philo->shared->num_philos;
first = left_fork;
second = right_fork;
if (first > second)
{
first = right_fork;
second = left_fork;
}
// Strategy A: Global lock for all operations
pthread_mutex_lock(&philo->shared->global_mutex);
print_message(philo->shared, philo->id, "has taken a fork");
if (philo->shared->num_philos == 1)
{
pthread_mutex_unlock(&philo->shared->global_mutex);
return ;
}
print_message(philo->shared, philo->id, "has taken a fork");
philo->last_meal_time = get_current_time();
detect_data_race(philo, "meal_time_update");
print_message(philo->shared, philo->id, "is eating");
precise_sleep(philo->shared->time_to_eat);
philo->meals_eaten++;
detect_data_race(philo, "meals_eaten_update");
pthread_mutex_unlock(&philo->shared->global_mutex);
}
void philo_eat_strategy_b(t_philo *philo)
{
int left_fork;
int right_fork;
int first;
int second;
left_fork = philo->id - 1;
right_fork = philo->id % philo->shared->num_philos;
first = left_fork;
second = right_fork;
if (first > second)
{
first = right_fork;
second = left_fork;
}
// Strategy B: Mutex per fork + printf mutex
pthread_mutex_lock(&philo->shared->forks[first]);
print_message(philo->shared, philo->id, "has taken a fork");
if (philo->shared->num_philos == 1)
{
pthread_mutex_unlock(&philo->shared->forks[first]);
return ;
}
pthread_mutex_lock(&philo->shared->forks[second]);
print_message(philo->shared, philo->id, "has taken a fork");
philo->last_meal_time = get_current_time();
detect_data_race(philo, "meal_time_update");
print_message(philo->shared, philo->id, "is eating");
precise_sleep(philo->shared->time_to_eat);
philo->meals_eaten++;
detect_data_race(philo, "meals_eaten_update");
pthread_mutex_unlock(&philo->shared->forks[second]);
pthread_mutex_unlock(&philo->shared->forks[first]);
}
void philo_eat_strategy_c(t_philo *philo)
{
int left_fork;
int right_fork;
int first;
int second;
left_fork = philo->id - 1;
right_fork = philo->id % philo->shared->num_philos;
first = left_fork;
second = right_fork;
if (first > second)
{
first = right_fork;
second = left_fork;
}
// Strategy C: Minimize lock time - lock only when necessary
pthread_mutex_lock(&philo->shared->forks[first]);
print_message(philo->shared, philo->id, "has taken a fork");
if (philo->shared->num_philos == 1)
{
pthread_mutex_unlock(&philo->shared->forks[first]);
return ;
}
if (pthread_mutex_trylock(&philo->shared->forks[second]) != 0)
{
// Couldn't get second fork, release first and retry
pthread_mutex_unlock(&philo->shared->forks[first]);
usleep(1000); // Brief pause
return ;
}
print_message(philo->shared, philo->id, "has taken a fork");
// Update meal time with minimal lock time
long long current_time = get_current_time();
philo->last_meal_time = current_time;
detect_data_race(philo, "meal_time_update");
print_message(philo->shared, philo->id, "is eating");
precise_sleep(philo->shared->time_to_eat);
// Update meals eaten
philo->meals_eaten++;
detect_data_race(philo, "meals_eaten_update");
pthread_mutex_unlock(&philo->shared->forks[second]);
pthread_mutex_unlock(&philo->shared->forks[first]);
}
void philo_eat(t_philo *philo)
{
if (philo->shared->strategy == STRATEGY_A)
philo_eat_strategy_a(philo);
else if (philo->shared->strategy == STRATEGY_B)
philo_eat_strategy_b(philo);
else
philo_eat_strategy_c(philo);
}
void *philo_routine(void *arg)
{
t_philo *philo;
philo = (t_philo *)arg;
if (philo->id % 2 == 0)
precise_sleep(50);
while (!check_stop(philo->shared))
{
print_message(philo->shared, philo->id, "is thinking");
philo_eat(philo);
if (check_stop(philo->shared))
break ;
print_message(philo->shared, philo->id, "is sleeping");
precise_sleep(philo->shared->time_to_sleep);
}
return (NULL);
}
int check_death(t_shared *shared)
{
int i;
long long current_time;
long long time_since_meal;
i = 0;
while (i < shared->num_philos)
{
current_time = get_current_time();
time_since_meal = current_time - shared->philos[i].last_meal_time;
if (time_since_meal > shared->time_to_die)
{
shared->simulation_stop = 1;
shared->total_deaths++;
if (shared->strategy == STRATEGY_A)
pthread_mutex_lock(&shared->global_mutex);
print_message(shared, shared->philos[i].id, "died");
if (shared->strategy == STRATEGY_A)
pthread_mutex_unlock(&shared->global_mutex);
return (1);
}
i++;
}
return (0);
}
void *monitor_routine(void *arg)
{
t_shared *shared;
shared = (t_shared *)arg;
while (!check_stop(shared))
{
if (check_death(shared))
break ;
usleep(1000);
}
return (NULL);
}
int ft_atoi(const char *str)
{
int result;
int i;
result = 0;
i = 0;
while (str[i] >= '0' && str[i] <= '9')
{
result = result * 10 + (str[i] - '0');
i++;
}
return (result);
}
int is_valid_number(const char *str)
{
int i;
i = 0;
if (!str || str[0] == '\0')
return (0);
while (str[i])
{
if (str[i] < '0' || str[i] > '9')
return (0);
i++;
}
return (1);
}
int parse_arguments(int argc, char **argv, t_shared *shared, int *iterations)
{
if (argc != 5 && argc != 6)
{
printf("Usage: %s number_of_philosophers time_to_die time_to_eat time_to_sleep [iterations]\n",
argv[0]);
return (0);
}
if (!is_valid_number(argv[1]) || !is_valid_number(argv[2])
|| !is_valid_number(argv[3]) || !is_valid_number(argv[4]))
return (0);
shared->num_philos = ft_atoi(argv[1]);
shared->time_to_die = ft_atoi(argv[2]);
shared->time_to_eat = ft_atoi(argv[3]);
shared->time_to_sleep = ft_atoi(argv[4]);
if (shared->num_philos <= 0 || shared->time_to_die <= 0
|| shared->time_to_eat <= 0 || shared->time_to_sleep <= 0)
return (0);
*iterations = 10; // Default for testing
if (argc == 6)
{
if (!is_valid_number(argv[5]))
return (0);
*iterations = ft_atoi(argv[5]);
if (*iterations <= 0)
*iterations = 10;
}
return (1);
}
int init_shared(t_shared *shared)
{
int i;
shared->simulation_stop = 0;
shared->total_data_races = 0;
shared->total_deaths = 0;
shared->forks = malloc(sizeof(pthread_mutex_t) * shared->num_philos);
if (!shared->forks)
return (0);
shared->philos = malloc(sizeof(t_philo) * shared->num_philos);
if (!shared->philos)
{
free(shared->forks);
return (0);
}
i = 0;
while (i < shared->num_philos)
{
pthread_mutex_init(&shared->forks[i], NULL);
i++;
}
if (shared->strategy == STRATEGY_A)
pthread_mutex_init(&shared->global_mutex, NULL);
else
pthread_mutex_init(&shared->printf_mutex, NULL);
return (1);
}
void init_philosophers(t_shared *shared)
{
int i;
long long current_time;
current_time = get_current_time();
shared->start_time = current_time;
i = 0;
while (i < shared->num_philos)
{
shared->philos[i].id = i + 1;
shared->philos[i].meals_eaten = 0;
shared->philos[i].last_meal_time = current_time;
shared->philos[i].data_race_count = 0;
shared->philos[i].shared = shared;
i++;
}
}
void cleanup(t_shared *shared, pthread_t *threads)
{
int i;
i = 0;
while (i < shared->num_philos)
{
pthread_mutex_destroy(&shared->forks[i]);
i++;
}
if (shared->strategy == STRATEGY_A)
pthread_mutex_destroy(&shared->global_mutex);
else
pthread_mutex_destroy(&shared->printf_mutex);
free(shared->forks);
free(shared->philos);
free(threads);
}
t_test_result run_simulation(t_strategy strategy, int num_philos, int time_to_die,
int time_to_eat, int time_to_sleep)
{
t_shared shared;
pthread_t *threads;
pthread_t monitor;
int i;
long long start_time;
long long end_time;
// Initialize shared data
memset(&shared, 0, sizeof(t_shared));
shared.num_philos = num_philos;
shared.time_to_die = time_to_die;
shared.time_to_eat = time_to_eat;
shared.time_to_sleep = time_to_sleep;
shared.strategy = strategy;
if (!init_shared(&shared))
return ((t_test_result){strategy, -1, -1, -1});
init_philosophers(&shared);
threads = malloc(sizeof(pthread_t) * shared.num_philos);
if (!threads)
{
cleanup(&shared, NULL);
return ((t_test_result){strategy, -1, -1, -1});
}
start_time = get_current_time();
// Create philosopher threads
i = 0;
while (i < shared.num_philos)
{
pthread_create(&threads[i], NULL, philo_routine, &shared.philos[i]);
i++;
}
// Create monitor thread
pthread_create(&monitor, NULL, monitor_routine, &shared);
// Wait for threads
i = 0;
while (i < shared.num_philos)
{
pthread_join(threads[i], NULL);
i++;
}
pthread_join(monitor, NULL);
end_time = get_current_time();
t_test_result result = {
strategy,
shared.total_data_races,
shared.total_deaths,
end_time - start_time
};
cleanup(&shared, threads);
return (result);
}
void print_strategy_name(t_strategy strategy)
{
if (strategy == STRATEGY_A)
printf("Strategy A (Global Mutex)");
else if (strategy == STRATEGY_B)
printf("Strategy B (Fork Mutexes + Print)");
else
printf("Strategy C (Minimize Locks)");
}
void run_stress_test(int num_philos, int time_to_die, int time_to_eat, int time_to_sleep, int iterations)
{
t_test_result results[3];
long long total_times[3] = {0, 0, 0};
int total_races[3] = {0, 0, 0};
int total_deaths[3] = {0, 0, 0};
int i;
printf("Running stress test with %d iterations...\n", iterations);
printf("Configuration: %d philosophers, die=%dms, eat=%dms, sleep=%dms\n\n",
num_philos, time_to_die, time_to_eat, time_to_sleep);
for (i = 0; i < iterations; i++)
{
int strategy;
for (strategy = 0; strategy < 3; strategy++)
{
results[strategy] = run_simulation(strategy, num_philos, time_to_die,
time_to_eat, time_to_sleep);
total_times[strategy] += results[strategy].time_ms;
total_races[strategy] += results[strategy].data_races;
total_deaths[strategy] += results[strategy].deaths;
}
if ((i + 1) % 10 == 0)
printf("Completed %d/%d iterations\n", i + 1, iterations);
}
printf("\n=== STRESS TEST RESULTS ===\n");
for (i = 0; i < 3; i++)
{
printf("\n");
print_strategy_name(i);
printf(":\n");
printf(" Average time: %.2f ms\n", (double)total_times[i] / iterations);
printf(" Total data races: %d (avg: %.2f per run)\n",
total_races[i], (double)total_races[i] / iterations);
printf(" Total deaths: %d (avg: %.2f per run)\n",
total_deaths[i], (double)total_deaths[i] / iterations);
}
}
int main(int argc, char **argv)
{
t_shared shared;
int iterations;
memset(&shared, 0, sizeof(t_shared));
if (!parse_arguments(argc, argv, &shared, &iterations))
{
printf("Error: Invalid arguments\n");
return (1);
}
// Run stress test with the provided configuration
run_stress_test(shared.num_philos, shared.time_to_die,
shared.time_to_eat, shared.time_to_sleep, iterations);
return (0);
}